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Abstract

An extension of TOPSIS (technique for order performance by similarity to ideal solution), a multi-attribute decision making
(MADM) technique, to a group decision environment is investigated. TOPSIS is a practical and useful technique for ranking and
selection of a number of externally determined alternatives through distance measures. To get a broad view of the techniques
used, we provide a few options for the operations, such as normalization, distance measures and mean operators, at each of the
corresponding steps of TOPSIS. In addition, the preferences of more than one decision maker are internally aggregated into the
TOPSIS procedure. Unlike in previous developments, our group preferences are aggregated within the procedure. The proposed
model is indeed a unified process and it will be readily applicable to many real-world decision making situations without increasing
the computational burden. In the final part, the effects of external aggregation and internal aggregation of group preferences for
TOPSIS with different computational combinations are compared using examples. The results have demonstrated our model to be
both robust and efficient.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

TOPSIS (technique for order performance by similarity to ideal solution) is a useful technique in dealing with multi-
attribute or multi-criteria decision making (MADM/MCDM) problems in the real world [1]. It helps decision maker(s)
(DMs) organize the problems to be solved, and carry out analysis, comparisons and rankings of the alternatives.
Accordingly, the selection of a suitable alternative(s) will be made. However, many decision making problems within
organizations will be a collaborative effort. Hence, this study will extend TOPSIS to a group decision environment to
fit real work. A complete and efficient procedure for decision making will then be provided.

The basic idea of TOPSIS is rather straightforward. It originates from the concept of a displaced ideal point
from which the compromise solution has the shortest distance [2,3]. Hwang and Yoon [1] further propose that the
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ranking of alternatives will be based on the shortest distance from the (positive) ideal solution (PIS) and the farthest
from the negative ideal solution (NIS) or nadir. TOPSIS simultaneously considers the distances to both PIS and
NIS, and a preference order is ranked according to their relative closeness, and a combination of these two distance
measures. According to Kim et al. [4] and our observations, four TOPSIS advantages are addressed: (i) a sound
logic that represents the rationale of human choice; (ii) a scalar value that accounts for both the best and worst
alternatives simultaneously; (iii) a simple computation process that can be easily programmed into a spreadsheet;
and (iv) the performance measures of all alternatives on attributes can be visualized on a polyhedron, at least for
any two dimensions. These advantages make TOPSIS a major MADM technique as compared with other related
techniques such as analytical hierarchical process (AHP) and ELECTRE (refer to [1]). In fact, TOPSIS is a utility-
based method that compares each alternative directly depending on data in the evaluation matrices and weights [5].
Besides, according to the simulation comparison from Zanakis et al. [6], TOPSIS has the fewest rank reversals among
the eight methods in the category. Thus, TOPSIS is chosen as the main body of development.

Because MADM is a practical tool for selection and ranking of a number of alternatives, its applications
are numerous. TOPSIS has been deemed one of the major decision making techniques within the Asian Pacific
area. In recent years, TOPSIS has been successfully applied to the areas of human resources management [7],
transportation [8], product design [9], manufacturing [10], water management [11], quality control [12], and location
analysis [13]. In addition, the concept of TOPSIS has also been connected to multi-objective decision making [14]
and group decision making [15]. The high flexibility of this concept is able to accommodate further extension to make
better choices in various situations. This is the motivation of our study.

It is not uncommon for certain groups to constantly make complex decisions within organizations. However, for
using any MADM technique, e.g., TOPSIS, it is usually assumed that the decision information is provided in advance
by a team or a task group. Thus, Shih et al. [16] propose post-work to enhance TOPSIS as a problem-solving tool.
However, this compensation needs a group decision support system to fulfill its objectives. To simplify the decision
making activities, we will suggest an integrated group TOPSIS procedure for solving real-world problems, with the
goal of making effective decisions.

The paper is organized as follows. In the next section, the literature survey for the applications and group works for
TOPSIS is given. Section 3 will focus on the proposed group TOPSIS model, with various combinations, in a step-
by-step fashion. Afterwards, external and internal aggregation experiments, under varying circumstances, are tested.
In the final section, conclusions are drawn and remarks made as regards future study.

2. Literature survey

To arrange the survey in various aspects, we will divide it into two parts: TOPSIS and group decision making, and
the operations within TOPSIS.

2.1. TOPSIS and group decision making

Functionally associated with problems of discrete alternatives, MADM techniques are practical tools for solving
real-world problems. The DM is to select, prioritize, and rank a finite number of courses of action [1]. Since there are
too many techniques involved, Hwang and Yoon also provide a taxonomy for classifying the techniques as: the types
of information from DMs, salient features of information, and a major class of methods. The classification indeed
gives us a clear direction for learning MADM techniques.

Among these techniques, the category of information on attributes from DMs with cardinal information is
convenient for making decisions owing to an explicitly represented procedure. In this category, TOPSIS, the concept
of distance measures, of the alternatives from the PIS and the NIS, proposed by Hwang and Yoon [1] is the most
straightforward technique in MADM. TOPSIS has been an important branch of decision making since then. To
clarify its features, the characteristics of TOPSIS and AHP [17] are compared in Table 1. We can see that the major
weaknesses of TOPSIS are in not providing for weight elicitation, and consistency checking for judgments. However,
AHP’s employment has been significantly restrained by the human capacity for information processing, and thus the
number seven plus or minus two would be the ceiling in comparison [18]. From this viewpoint, TOPSIS alleviates the
requirement of paired comparisons and the capacity limitation might not significantly dominate the process. Hence,
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Table 1
Comparison of characteristics between AHP and TOPSIS

Characteristics AHP TOPSIS

1 Category Cardinal information, information on attribute, MADM Cardinal information, information on attribute, MADM
2 Core process Pairwise comparison

(cardinal ratio measurement)
The distances from PIS and NIS
(cardinal absolute measurement)

3 Attribute Given Given
4 Weight elicitation Pairwise comparison Given
5 Consistency check Provided None
6 No. of attributes

accommodated
7 ± 2 or hierarchical decomposition Many more

7 No. of alternatives
accommodated

7 ± 2 Many more

8 Others Compensatory operation Compensatory operation

Note: Please refer to Hwang and Yoon [1], Saaty [17], and Saaty and Ozdemir [18].

Table 2
Some applications of TOPSIS

Application areas No. of attributes No. of alternatives Proposed by

1 Company financial ratios comparison Four attributes 7 alternatives Deng et al. [19]
2 Expatriate host country selection Six major attributes (25 sub-attributes) 10 alternatives Chen and Tzeng [7]
3 Facility location selection Five attributes 4 alternatives Chu [20]
4 Gear material selection Five attributes 9 alternatives Milani et al. [10]
5 High-speed transport system selection Fifteen attributes 3 alternatives Janic [8]
6 Manufacturing plant location analysis Five major attributes (16 sub-attributes) 5 alternatives Yoon and Hwang [13]
7 Multiple response selection Two attributes (or responses) 18 alternatives (or scenarios) Yang and Chou [12]
8 Rapid prototyping-process selection Six attributes 6 alternatives Byun and Lee [21]
9 Robot selection Four attributes 27 alternatives Parkan and Wu [22]

10 Solid waste management Twelve attributes 11 alternatives Cheng et al. [5]
11 Water management Six attributes (with 3 demand points) 12 alternatives (or scenarios) Srdjevic et al. [11]

it would be suitable for cases with a large number of attributes and alternatives, and especially handy for objective or
quantitative data given.

Due to its logical reasoning, TOPSIS has solved many real-world problems, especially in recent years in the Asian
Pacific region. Its applications are various, and Table 2 illustrates eleven typical applicable areas. In addition, the
attributes and alternatives involved are also listed in the corresponding cases. This advantage will accommodate many
applications in the near future.

Now that certain groups are constantly making complex decisions within organizations, group decision making
is drawing a lot more attention. In extending TOPSIS to a group decision environment, a couple of works have
involved the preference aggregation among the group. We can classify these works as external aggregation and internal
aggregation as shown in Table 3. The former utilizes some operations to manipulate the alternative ratings and weight
ratings, or uses a social welfare function to obtain a final ranking from individual DMs of the group (i.e., outside the
traditional TOPSIS procedure; see Chen [23], Chu [20], Parkan and Wu [24], Shih et al. [15,16]). The latter tries to
aggregate the preference of individuals within the TOPSIS procedure as in our study (i.e., an integrated procedure).
Moreover, in the external aggregation class, we can further distinguish the methods as pre-operation (i.e., mathematical
operators for cardinal information) and post-operation (i.e., Borda’s count or function for ordinal information), which
depend on whether the aggregation is done before or after the TOPSIS procedure. However, in the external aggregation
class, there is only cardinal information. It seems that external aggregation aims to provide more information to
support a complex decision, and the internal aggregation focus is on an integrated decision making procedure. From
a practical viewpoint, MADM is known for its ease of use, and the integrated procedure will keep this strength and
obtain multiple sources of knowledge and experience. Thus, this study will concentrate on the integrated TOPSIS for
achieving an efficient decision.
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Table 3
The preference aggregation for TOPSIS in the group decision environment

Aggregation method Target Proposed by

I External aggregation

I.1 Pre-operation (cardinal information)

1 Weighted sum Alternative rating on subjective attributes (1–9 scale) Parkan and Wu [24]
2 Arithmetical mean Alternative rating on attributes (fuzzy) weights rating of criteria (fuzzy) Chen [23]
3 Arithmetical mean Alternative rating on subjective attributes (fuzzy) weights rating of criteria (fuzzy) Chu [20]

I.2 Post-operation (ordinal information)

4 Borda’s count TOPSIS ranking Shih et al. [15,16]

II Internal aggregation (cardinal information)

1 Arithmetic mean Separation measure This study
2 Geometric mean Separation measure This study

Note: Beside Borda’s count (or function), there are many social choice functions for group syntheses. Please check Hwang and Lin [25].

2.2. The operations within TOPSIS

In addition to making group environments more manageable, many operations in each step of TOPSIS are
scrutinized so that a broad view of TOPSIS can be established. The operations within the TOPSIS process
include: decision matrix normalization, distance measures, and aggregation operators, which will be described in
the background information to be put forward in the following section.

For MADM, a decision matrix is usually required prior to the beginning of the process. The decision matrix
contains competitive alternatives row-wise, with their attributes’ ratings or scores column-wise. Normalization is an
operation to make these scores conform to or reduced to a norm or standard. To compare the alternatives on each
attribute, the normalized process is usually made column-wise, and the normalized value will be a positive value
between 0 and 1. In this way, computational problems, resulting from different measurements in the decision matrix,
are eliminated [26]. At the same time, Yoon and Hwang partition attributes into three groups: benefit attributes,
cost attributes, and non-monotonic attributes. In addition, on the basis of the works of Hwang and Yoon [1], Milani
et al. [10] and Yoon and Hwang [26], a few common normalization methods are organized in Table 4. These are
classified as vector normalization, linear normalization, and non-monotonic normalization to fit real-world situations
under different circumstances. Additionally, three forms for linear normalization are listed here.

Noted that we presume the available data being completed in the given decision matrix, including quantitative and
qualitative information. The normalization of qualitative data or linguistic data could be first transformed to a linear
scale, e.g., 1–10; then the above mentioned methods will be applicable (ref. to [1]).

Distance is the degree or amount of separation between two points, lines, surfaces, or objectives. Originally TOPSIS
utilized Euclidean distances to measure the alternatives with their PIS and NIS so that the chosen alternative should
have the shortest distance from the PIS and the farthest distance from the NIS. In fact, there are a couple of common
distance measures, i.e., Minkowski’s L p metric in an n-dimensional space, where p ≥ 1 (see Berberian [27]).
Steuer [28] introduces weighted L p metric, and the measures can be considered as the judgment in making a choice.
The popular formulae of distance measures are depicted in Table 5.

On the basis of the proposed foundation, we will establish a generalized TOPSIS model in a group decision
environment.

3. The proposed model

To include the multiple preferences of more than one DM, we will consider the separation measures by taking the
geometric mean or arithmetic mean of the individuals for TOPSIS. The normalization methods and distance measures
are also taken into consideration as well. Compared to the original TOPSIS procedure, the proposed model offers a
general view of TOPSIS with group preference aggregation. The detailed procedure, with a few options within each
step, is illustrated in the following.
Step 1. Construct decision matrix Dk, k = 1, . . . , K , for each DM.
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Table 4
Some normalization methods for TOPSIS

1 Vector normalization
ri j =

xi j√∑m
i=1 x2

i j

, i = 1, . . . , m; j = 1, . . . , n.

2 Linear normalization (1)
ri j =

xi j
x∗

j
, i = 1, . . . , m; j = 1, . . . , n; x∗

j = maxi {xi j } for benefit attributes

ri j =
x∼

j
xi j

, i = 1, . . . , m; j = 1, . . . , n; x∼
j = mini {xi j }

or ri j = 1 −
xi j
x∗

j
, i = 1, . . . , m; j = 1, . . . , n; x∗

j = maxi {xi j } for cost attributes

3 Linear normalization (2)

ri j =
xi j −x∼

j
x∗

j −x∼
j

for benefit attributes

ri j =
x∗

j −xi j
x∗

j −x∼
j

for cost attributes

4 Linear normalization (3)
ri j =

xi j∑m
i=1 xi j

, i = 1, . . . , m; j = 1, . . . , n.

5 Non-monotonic normalization

e−
z2
2 , z =

(xi j −x0
j )

σ j
; x0

j is the most favorable value and σ j is the standard deviation of alternative ratings with respective to the j th attribute.

Note: (1) Please refer to Hwang and Yoon [1], Milani et al. [10], and Yoon and Hwang [26]. (2) Non-monotonic normalization is less used in the
literature.

Table 5
Distance measures (functions) for TOPSIS

I Minkowski’s L p metrics
L p(x, y) = {

∑n
j=1 |x j − y j |

p
}
1/p , where p ≥ 1 and with n dimensions

(i) Manhattan (city block) distance p = 1
(ii) Euclidean distance p = 2
(iii) Tchebycheff distance p = ∝

II Weighted L p metrics
L p(x, y) = {(w j

∑n
j=1 |x j − y j |)

p
}
1/p , where p ∈ {1, 2, 3, . . .} ∪ {∝}

w j is the weight on the j th dimension or direction. The distance names are defined in the same way as above (i)–(iii).

Note: (1) Please refer to Berberian [27], Jones and Mardle [29], and Steuer [28] for details. (2) In general, p is a real number ≥1, but three positive
integer values are common for Minkowski’s p metric with p = 1, 2, and ∝. In addition, for 0 < p < 1, the distance is a hyper-rectilinear distance,
but it no longer has the properties of a norm.

The structure of the matrix can be expressed as follows:

Dk
=



X1 X2 ··· X j ··· Xn

A1 xk
11 xk

12 · · · xk
1 j · · · xk

1n
A2 xk

21 xk
22 · · · xk

2 j · · · xk
2n

...
...

... · · ·
... · · ·

...

Ai xk
i1 xk

i2 · · · xk
i j · · · xk

in
...

...
... · · ·

... · · ·
...

Am xk
m1 xk

m2 · · · xk
mj · · · xk

mn


(1)

where Ai denotes the alternative i , i = 1, . . . , m; X j represents the attribute or criterion j , j = 1, . . . , n; with
quantitative and qualitative data. xk

i j indicates the performance rating of alternative Ai with respect to attribute X j by
decision maker k, k = 1, . . . , K , and xk

i j is the element of Dk . It is noted that there should be K decision matrices for
the K members of the group.

Observe that we can also set the outcomes of qualitative attributes from each alternative as discrete values, e.g., 1
to 10 or linguistics values, so that the quantitative values will be placed in the above decision matrix [1].
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Step 2. Construct the normalized decision matrix Rk , k = 1, . . . , K , for each DM.
For DM k, the normalized value rk

i j of the decision matrix Rk can be any linear-scale transformation to keep
0 ≤ rk

i j ≤ 1. For a general definition, we introduce three operators �, , and ⊗. Then the normalized value can be
represented as

rk
i j = xk

i j � {xk
i1 xk

i2 · · · xk
in} ⊗ xk∗

j (2a)

or

rk
i j = xk

i j � {xk
i1 xk

i2 · · · xk
in} ⊗ xk∼

j (2b)

where xk∗

j = maxi {xk
i j } and xk∼

j = mini {xk
i j } for i = 1, . . . , m, j = 1, . . . , n, and k = 1, . . . , K .

For normalization, Eq. (2a) for benefit criterion j will be

rk
i j =

xk
i j

xk∗

j
; (3a)

And Eq. (2b) for cost criterion j will be

rk
i j =

xk∼

j

xk
i j

. (3b)

Moreover, if we simply consider that the normalized value of rk
i j is the value of the corresponding element xk

i j
divided by the operation of its column elements, i.e., vector normalization, then

rk
i j =

xk
i j√

n∑
j=1

(xk
i j )

2

, (4)

where i = 1, . . . , m; j = 1, . . . , n; and k = 1, . . . , K .
Note that while utilizing Eq. (4) for normalization, we will make a distinction as to which one is a cost criterion

for further manipulation.
In addition, we do not go directly to the process weighted normalized matrix as in the original TOPSIS. Please see

Shipley et al. [30] for the reason.

Step 3. Determine the ideal and negative ideal solutions V k+ (PIS) and V k− (NIS), respectively, for each DM
k = 1, . . . , K .

For DM k, his or her PIS and NIS are

V k+
= {rk+

1
, . . . , rk+

n } = {(max
i

rk
i j | j ∈ J ), (min

i
rk

i j | j ∈ J ′)},

V k−
= {rk−

1
, . . . , rk−

n } = {(min
i

rk
i j | j ∈ J ), (max

i
rk

i j | j ∈ J ′)},
(5)

where J is associated with the benefit criteria and J ′ is associated with the cost criteria; i = 1, . . . , m; j = 1, . . . , n;
and k = 1, . . . , K .

Step 4. Assign a weight vector W to the attribute set for the group.
Each DM will elicit weights for attributes as wk

j , where j = 1, . . . , n, and
∑n

j=1 wk
j = 1; and for each DM

k = 1, . . . , K . Each element of the weight vector W will be the operation of the corresponding elements of the
attributes’ weights per DM.

Step 5. Calculate the separation measure from the ideal and the negative ideal solutions, S+

i and S−

i , respectively, for
the group.

There are two sub-steps to be considered in Step 6. The first one concerns the distance measure for individuals; the
second one aggregating the measures for the group.
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Step 5a. Calculate the measures from PIS and NIS individually.
For DM k, his or her separation measures from PIS and NIS are computed through Minkowski’s L p metric. The

individual separation measures of each alternative from the PIS and NIS are

Sk+

i =

{
n∑

j=1

wk
j (v

k
i j − vk+

j )
p
}1/p

, for alternative i, i = 1, . . . , m (6)

and

Sk−

i =

{
n∑

j=1

wk
j (v

k
i j − vk−

j )
p
}1/p

, for alternative i, i = 1, . . . , m (7)

where p ≥ 1 and integer, wk
j is the weight for the attribute j and DM k, and

∑n
j=1 wk

j = 1, k = 1, . . . , K .
If we let p = 2, the metric is a Euclidean distance. Eqs. (6) and (7) will be

Sk+

i =

√√√√ n∑
j=1

wk
j (v

k
i j − vk+

j )2, for alternative i, i = 1, . . . , m (8)

and

Sk−

i =

√√√√ n∑
j=1

wk
j (v

k
i j − vk−

j )2, for alternative i, i = 1, . . . , m. (9)

Step 5b. Calculate the measures of PIS and NIS for the group.
In addition, the group separation measure of each alternative will be combined through an operation ⊗ for all DMs,

k = 1, . . . , K . Thus, the two group measures of the PIS and NIS are the following two equations:

S+

i = S1+

i ⊗ · · · ⊗ SK+

i , for alternative i, (10)

S−

i = S1+

i ⊗ · · · ⊗ SK+

i , for alternative i. (11)

The operation can offer many choices, geometric mean, arithmetic mean, or their modification. If we take the
geometric mean of all individual measures, the group measures, Eqs. (8) and (9), from PIS and NIS will be

S+

i =

(
K∏

k=1

Sk+

i

) 1
K

, for alternative i, (12)

and

S−

i =

(
K∏

k=1

Sk−

i

) 1
K

, for alternative i, (13)

where i = 1, . . . , m; k = 1, . . . , K .

Step 6. Calculate the relative closeness C∗

i to the ideal solution for the group.
Calculate the relative closeness to the ideal solution and rank the alternatives in descending order. The relative

closeness of the i th alternative Ai with respect to PIS can be expressed as

C∗

i =
S−

i

S+

i + S−

i

, i = 1, . . . , m (14)

where 0 ≤ C∗

i ≤ 1. The larger the index value, the better the performance of the alternative.
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Table 6a
Decision matrix of Example 1—objective attributes

No. Candidates Objective attributes
Knowledge tests Skill tests
Language test Professional test Safety rule test Professional skills Computer skills

1 James B. Wang 80 70 87 77 76
2 Carol L. Lee 85 65 76 80 75
3 Kenney C. Wu 78 90 72 80 85
4 Robert M. Liang 75 84 69 85 65
5 Sophia M. Cheng 84 67 60 75 85

6 Lily M. Pai 85 78 82 81 79
7 Abon C. Hsieh 77 83 74 70 71
8 Frank K. Yang 78 82 72 80 78
9 Ted C. Yang 85 90 80 88 90

10 Sue B. Ho 89 75 79 67 77

11 Vincent C. Chen 65 55 68 62 70
12 Rosemary I. Lin 70 64 65 65 60
13 Ruby J. Huang 95 80 70 75 70
14 George K. Wu 70 80 79 80 85
15 Philip C. Tsai 60 78 87 70 66

16 Michael S. Liao 92 85 88 90 85
17 Michelle C. Lin 86 87 80 70 72

Note: (1) There is no difference in objective attributes among the group. (2) There are a total of 17 candidates for evaluation. (3) All listed attributes
are benefit attributes.

Step 7. Rank the preference order.
A set of alternatives can now be preference ranked according to the descending order of the value of C∗

i .
As the integrated model has outlined, we will now illustrate the process through an example.

Example 1. A human resources selection example.

A local chemical company tries to recruit an on-line manager. The company’s human resources department
provides some relevant selection tests, as the benefit attributes to be evaluated. These include knowledge tests
(language test, professional test and safety rule test), skill tests (professional skills and computer skills), and interviews
(panel interview and 1-on-1 interviews). There are 17 qualified candidates on the list, and four decision makers
are responsible for the selection. The basic data, including objective and subjective attributes (only quantitative
information here), for the decision are listed in Tables 6a and 6b. In addition, the weights of attributes, elicited by
DMs, are shown in Table 7.

Following the suggested steps, each DM will construct a normalized decision matrix, determine PIS/NIS, and
calculate the separation measures. Then, through aggregation by geometric mean, the relative closeness can be
calculated as illustrated in Table 8. We can see that the 16th candidate is ranked first, and the 11th candidate is
ranked last.

4. External aggregation versus internal aggregation under certain circumstances

For extending TOPSIS to a group decision environment, Table 3 has illustrated some typical past works. Most of
the works are classified as external aggregations that use simple operators to aggregate the importance of the criteria
and/or the rating of alternatives with respect to each criterion from individuals of the group [20,23,24]. Alternatively,
we propose a group TOPSIS model for deriving group priorities provided by multiple DMs and synthesizing them
into a single integrated stage. This can be categorized as internal aggregation because all individual preferences are
grouped into the TOPSIS procedure and weighted distances are utilized instead of a weighted decision matrix. This
development seems more meaningful since it is truly a group decision process for TOPSIS.

As pointed out by Shih et al. [15], the weights rating of attributes and the rating of alternatives on attributes are
usually externally defined through teamwork or a task group; at the least, there exists some kind of consent in the use
of common MADM techniques. From this viewpoint, the works of Chen [23], Chu [20], and Parkan and Wu [24], a
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Table 6b
Decision matrix of Example 1—subjective attributes

No. Subjective attributes
DM #1 DM #2 DM #3 DM #4
Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

Panel
interview

1-on-1
interview

1 80 75 85 80 75 70 90 85
2 65 75 60 70 70 77 60 70
3 90 85 80 85 80 90 90 95
4 65 70 55 60 68 72 62 72
5 75 80 75 80 50 55 70 75

6 80 80 75 85 77 82 75 75
7 65 70 70 60 65 72 67 75
8 70 60 75 65 75 67 82 85
9 80 85 95 85 90 85 90 92

10 70 75 75 80 68 78 65 70

11 50 60 62 65 60 65 65 70
12 60 65 65 75 50 60 45 50
13 75 75 80 80 65 75 70 75
14 80 70 75 72 80 70 75 75
15 70 65 75 70 65 70 60 65

16 90 95 92 90 85 80 88 90
17 80 85 70 75 75 80 70 75

Note: (1) There are four decision makers (DMs) selected for the evaluation. (2) There are a total of 17 candidates for evaluation. (3) All listed
attributes are benefit attributes.

Table 7
Weights on attributes of Example 1

No. Attributes The weights of the group
DM #1 DM #2 DM #3 DM #4

Knowledge tests

1 Language test 0.066 0.042 0.060 0.047
2 Professional test 0.196 0.112 0.134 0.109
3 Safety rule test 0.066 0.082 0.051 0.037

Skill tests

4 Professional skills 0.130 0.176 0.167 0.133
5 Computer skills 0.130 0.118 0.100 0.081

Interviews

6 Panel interview 0.216 0.215 0.203 0.267
7 1-on-1 interview 0.196 0.255 0.285 0.326

Sum 1.000 1.000 1.000 1.000

Note: There are four DMs selected for the evaluation.

part of external aggregation, seem not to have much meaning if we get rid of the argument between fuzzy and crisp
sets. In addition, some choice functions (e.g., Borda’s function, Copeland’s function) and statistical methods can be
applied to aggregate the preference orders of MADM results [1]. It is rather natural and logical to make the extension
of MADM techniques to a group decision environment as in the development by Shih et al. [15,16].

Moreover, for a further investigation, some operations in each step of TOPSIS might have an effect on the results
of aggregation. The first operation is as regards the methods of normalization. These include vector normalization,
several forms of linear normalization, and non-monotonic normalization (see Table 4). The first two methods are
popular for decision making, and the third one is used only on some occasions. The second operation is related to
distance measures (see Table 5). There are three common distances of Minkowski’s L p metrics to be recognized:
Manhattan distance p = 1, Euclidean distance p = 2, and Tchebycheff distance p = ∝. The first two seem to most
easily fit our purpose. In addition, there are also three common means to be considered: arithmetical mean, geometric
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Table 8
The relative closeness and rank by group TOPSIS of Example 1

No. Separation measure of the group Relative closeness Rank Note

S+

i S−

i C∗
i

1 0.0437 0.0735 0.6272 5
2 0.0653 0.0514 0.4404 14
3 0.0260 0.0956 0.7860 3
4 0.0684 0.0566 0.4527 12
5 0.0640 0.0558 0.4660 11

6 0.0388 0.0757 0.6611 4
7 0.0653 0.0539 0.4523 13
8 0.0503 0.0667 0.5701 8
9 0.0141 0.1031 0.8797 2

10 0.0578 0.0596 0.5080 10

11 0.0916 0.0243 0.2097 16
12 0.0965 0.0194 0.1678 17 #
13 0.0523 0.0657 0.5568 9
14 0.0483 0.0702 0.5924 6
15 0.0717 0.0497 0.4091 15

16 0.0120 0.1032 0.8960 1 *
17 0.0485 0.0704 0.5920 7

Note: (1) The separation measure of the group is counted through the geometric mean of all DMs with Euclidean distance and vector normalization.
(2) There are a total of 17 candidates for evaluation. (3) “*” and “#” mark the first and the last candidate, respectively.

mean, and harmonic mean. The first two are common for group aggregation (see Table 3). In general, these operations
could be organized in different combinations for decision making. To understand how robust a decision will be, we
will observe the effects of these combinations on external and internal aggregations through the following example.

Example 2. Aggregation comparison for Example 1.

On the basis of the same decision information as for Example 1 with 17 candidates or alternatives to be ranked, we
will further investigate the effects of external and internal aggregations on the group decision under the circumstances
of linear and vector normalization, Manhattan and Euclidean distances, and arithmetical and geometric means as
well. Due to space limitations, just parts of the results from these combinations are illustrated, in Tables 9a, 9b and
9c, respectively.

In the portion of internal aggregation, Table 9a is the direct extension of Table 8. The ranking results from the
Manhattan/Euclidean distance and arithmetical/geometric mean, with vector normalization, are rather consistent. The
ranks of the first ten and the last three candidates do not change. Because the results of several forms of linear
normalization are consistent, we will omit them to save space. Under external aggregation, Table 9b illustrates
the ranking results from external operation aggregation with a number of combinations. The ranks of the first five
and the last three candidates do not change. The ranking results are also consistent with vector normalization and
linear normalization; however, only the cases using vector normalization are presented here. Table 9c illustrates the
ranking results from post-operation in external aggregation with several combinations. The ranking results are rather
inconsistent. Among the three sub-tables, the ranks in Table 9c are the most diverse.

After examining the three tables, we feel there is not much difference between external and internal aggregation
with pre-operational methods based on the human resources selection example, though the ranks in the former
seem more robust than the latter’s. Since cardinal information is processed throughout all the steps of TOPSIS,
the demonstrated solutions do not make much difference between these two. Moreover, the results from various
combinations have only slight differences as regards rank. Thus, these two types of aggregations can be considered
methods for acquiring strong decisions. On the other hand, dissimilar ranking results are generated by external
aggregation using a post-operation method, e.g., Borda’s function. The phenomenon shows us that ordinal information
might not be suitable for aggregation with cardinal information due to heterogeneous data. Although social choice
functions try to aggregate group preferences, further work is necessary to understand the contents of aggregation of
preferences.
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Table 9a
Summary of the results of Example 2—internal aggregation by the proposed model

Candidate Manhattan distance p = 1 Euclidean distance p = 2 Note
no. Arithmetical mean Geometric mean Arithmetical mean Geometric mean

Relative closeness
C∗

i

Rank Relative closeness
C∗

i

Rank Relative closeness
C∗

i

Rank Relative closeness
C∗

i

Rank

1 0.6359 5 0.6369 5 0.6295 5 0.6272 5
2 0.4476 12 0.4463 11 0.4407 14 0.4404 14
3 0.8285 3 0.8361 3 0.7583 3 0.7860 3
4 0.4471 13 0.4394 13 0.4523 13 0.4527 12
5 0.4549 11 0.4446 12 0.4651 11 0.4660 11

6 0.6678 4 0.6698 4 0.6591 4 0.6611 4
7 0.4440 14 0.4383 14 0.4551 12 0.4523 13
8 0.5708 8 0.5683 8 0.5692 8 0.5701 8
9 0.9071 2 0.9131 2 0.8749 2 0.8797 2

10 0.5055 10 0.5076 10 0.5063 10 0.5080 10

11 0.1930 16 0.1637 16 0.2302 16 0.2097 16
12 0.1465 17 0.1322 17 0.1745 17 0.1678 17 #
13 0.5574 9 0.5579 9 0.5562 9 0.5568 9
14 0.6044 6 0.6033 6 0.5936 6 0.5924 6
15 0.3926 15 0.3942 15 0.4077 15 0.4091 15

16 0.9126 1 0.9201 1 0.8905 1 0.8960 1 *
17 0.5958 7 0.5976 7 0.5908 7 0.5920 7

Note: (1) There are a total of 17 candidates for evaluation. (2) There are two distance measures used, and each one has two types of aggregation for
the group, arithmetic mean and geometric mean with vector normalization. (3) “*” and “#” mark the first and the last candidate, respectively.

Table 9b
Summary of the results of Example 2—internal aggregation/internal operation (1)

Candidate Manhattan distance p = 1 Euclidean distance p = 2 Note
no. Arithmetical mean Geometric mean Arithmetical mean Geometric mean

Relative closeness
C∗

i

Rank Relative closeness
C∗

i

Rank Relative closeness
C∗

i

Rank Relative closeness
C∗

i

Rank

1 0.6247 5 0.6264 5 0.6306 5 0.6345 5
2 0.4176 12 0.4221 11 0.3819 14 0.3871 14
3 0.8451 3 0.8460 3 0.8401 3 0.8416 3
4 0.4116 13 0.4139 13 0.3979 12 0.3973 12
5 0.4286 11 0.4215 12 0.4141 11 0.4044 11

6 0.6712 4 0.6741 4 0.6643 4 0.6685 4
7 0.4065 14 0.4039 14 0.3937 13 0.3955 13
8 0.5409 9 0.5399 9 0.5214 9 0.5197 9
9 0.9404 2 0.9047 2 0.9308 2 0.9326 2

10 0.4854 10 0.4887 10 0.4660 10 0.4705 10

11 0.1135 16 0.1195 16 0.1266 16 0.1330 16
12 0.0809 17 0.0793 17 0.1032 17 0.1006 17 #
13 0.5424 8 0.5455 8 0.5337 8 0.5372 8
14 0.5941 6 0.5981 6 0.5729 7 0.5781 7
15 0.3540 15 0.3572 15 0.3573 15 0.3595 15

16 0.9554 1 0.9555 1 0.9352 1 0.9366 1 *
17 0.5915 7 0.5933 7 0.5807 6 0.5829 6

Note: (1) There are a total of 17 candidates for evaluation. (2) There are two distance measures used, and each one has two types of aggregation for
the group, arithmetic mean and geometric mean with vector normalization. (3) “*” and “#” marked the first and the last candidate, respectively.

The experiment results tell us that our model can provide a robust decision for TOPSIS in a group decision
environment. Regardless of the sizes of examples being tested, we think the model would be meaningful and useful
as an integrated procedure.
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Table 9c
Summary of the results of Example 2—external aggregation/internal operation (2)

Candidate Vector normalization Linear normalization (1) Note
no. Manhattan distance Euclidean distance Manhattan distance Euclidean distance

Borda’s score Rank Borda’s score Rank Borda’s score Rank Borda’s score Rank

1 61 1 42 5 61 1 41 6
2 16 14 19 12 15 14 19 12
3 48 3 57 3 48 4 57 3
4 17 13 18 13 18 13 19 12
5 22 11 25 11 21 11 25 11
6 48 3 49 4 48 4 49 4
7 20 12 17 14 21 11 17 14
8 39 9 34 8 40 8 34 8
9 50 2 62 1 50 2 62 1

10 26 10 28 10 26 10 28 10

11 2 17 2 16 2 16 2 16
12 3 16 2 16 2 16 2 16
13 43 7 33 9 43 7 33 9
14 41 8 42 5 40 8 42 5
15 12 15 12 15 12 15 28 15
16 48 3 61 2 49 3 61 2
17 48 3 41 7 48 4 41 6

Note: (1) There are a total of 17 candidates for evaluation. (2) There are two distance measures used, and each one has two types of aggregation for
the group, arithmetic mean and geometric mean. (3) Please check Table 4 for the formula for linear normalization used here, and only the results
of the first form of linear normalization are listed.

5. Conclusions and remarks

We have proposed a group TOPSIS model for decision making. After checking the aggregations under various
circumstances, we can see that the model is rather simple to use and meaningful for aggregation, and it will not cause
more computational burden than the original TOPSIS. In addition, two examples have demonstrated the model is
efficient and robust. It is quite good for real-world applications.

We did not involve the topic of weight elicitation in this study, as it is usually assumed that the weights of attributes
are given as TOPSIS begins. Some authors suggest using AHP or other techniques to obtain the weights, as in the
study of Shih et al. [15]. Moreover, interested readers can also refer to Olson [31] for different weighting schemes in
TOPSIS models.

Although some observations are obtained from the given examples, we are confident the results for various
examples would give us similar conclusions. However, we still think a large number of examples (as regards the
aspects of weighting combinations, normalization methods and scaling techniques, distance measures, and group
synthesis) should be recommended for test in future studies.

We have not discussed consensus and other group interactions in the study. Interested readers can refer to Shih
et al. [16] as regards consensus on weights of attributes. Any topic related to group interactions would be an interesting
one for group decision making, and will be left for future study.
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